

Welcome to aiter’s documentation!

[image: _images/coverage.svg]
 [https://codecov.io/github/richardkiss/aiter][image: _images/aiter.svg]
 [https://pypi.python.org/pypi/aiter][image: _images/aiter1.svg]
 [https://pypi.python.org/pypi/aiter][image: _images/aiter2.svg]
 [https://travis-ci.org/richardkiss/aiter]This documentation is a work-in-progress, and your contributions are welcome
at <https://github.com/richardkiss/aiter>.

Useful patterns building upon asynchronous iterators

	
aiter.active_aiter(aiter)

	Wrap an aiter with a task that actively yanks out the items
and puts them into a push_q.

This might be useful if you have an iterator that needs its elements
pulled out as soon as they are created and cached in memory, even if
the consumer is not yet ready. Be careful though, since getting too
far behind can mean lots of memory is consumed, especially if each
element uses a lot of memory.

	
aiter.aiter_forker(aiter)

	If you have an aiter that you would like to fork (split into multiple
iterators, each of which produces the same elements), wrap it with this
function.

Returns a aiter.push_aiter object that will yield
the same objects in the same order. This object supports
fork, which will let you create a
duplicate stream.

	
aiter.aiter_to_iter(aiter, loop=None)

	Convert an async iterator to a regular iterator by invoking
run_until_complete repeatedly.

	Parameters

	
	aiter (aiter) – an asynchronous iterator

	loop (asyncio event loop) – the loop which will run aiter

	Returns

	a synchronous iterator returning the same elements as aiter

	Return type

	a synchronous iterator

	
aiter.azip(*aiters)

	async version of zip
This function takes a list of async iterators and returns a single async iterator
that yields tuples of elements.

Obviously this iterator advances as slow its slowest component.

	example:

	
	async for a, b, c in azip(aiter1, aiter2, aiter3):

	print(a, b, c)

	
aiter.flatten_aiter(aiter)

	Take an async iterator that returns lists and return the individual
elements.

	
class aiter.gated_aiter(aiter)

	Returns an aiter that you can “push” integer values into.
When a number is pushed, that many items are allowed out through the gate.

This is kind of like a discrete version of an electronic transistor.

	
aiter.iter_to_aiter(iter)

	This converts a regular iterator to an async iterator

	
aiter.join_aiters(aiter_of_aiters)

	Takes an iterator of async iterators and pipe them into a single async iterator.

This creates a task to monitor the main iterator, plus a task for each active
iterator that has come out of the main iterator.

	
aiter.map_aiter(map_f, aiter)

	Take an async iterator and a map function, and apply the function
to everything coming out of the iterator before passing it on.

	
aiter.map_filter_aiter(map_f, aiter)

	In this case, the map_f must return a list, which will be flattened.
You can filter items by excluding them from the list.
Empty lists are okay.

	
aiter.preload_aiter(preload_size, aiter)

	This aiter wraps around another aiter, and forces a preloaded
buffer of the given size.

	
class aiter.push_aiter(tail=None, next_preflight=None)

	An asynchronous iterator based on a linked-list.
Data goes in the head via “push”.
Allows peeking to determine how many elements are ready.
Can be copied very cheaply by copying the tail.
Has a “preflight” that is called whenever __anext__ is called.
The __anext__ method is wrapped with a semaphore so multiple
tasks can use the same iterator, and each output will go to only
one task.

This is functionally very similar to an async.Queue
object. It creates an aiter that you can push items into.
Unlike a Queue object, you can also invoke stop, which will
raise a StopAsyncIteration on the listener’s side, allowing for a
clean exit.

You’d use this when you want to “turn around” execution, ie. have
a task that is occasionally invoked (like a hardware interrupt)
to produce a new event for an aiter.

	Parameters

	
	next_preflight (a function that takes no arguments) – called every time __anext__ is invoked. Intended to
give the creator a chance to add more elements to the queue, if
necessary.

	tail (push_aiter_head) – the tail where new objects are pushed into the queue. Used by fork

	
available_iter()

	Return a synchronous iterator of elements that are immediately
available to be consumed without waiting for a task switch.

	
fork(is_active=True)

	Create and return a clone of this aiter at its current state. This copy
can be used by a separate task, and it will get the same output.

You might use this is you have an event stream that has different types
of events, and you want to write several modules, each of which handles
a subset of event types. Each module can get a view of the entire stream
and simply ignore events it’s not interested in.

	Parameters

	is_active (True or False) – If False, this clone is a passive one, that will only
return elements that have already been requested by at least one active
clone. You might use this feature for a task that keeps stats on events,
but it doesn’t want to force the events to be removed from because
a backlog of events might cause flow-control to be invoked.

	
is_item_available()

	Return a boolean indicating whether or not an element is available without
blocking for a task switch.

	
is_len_at_least(n)

	Return a boolean indicating whether or not n elements are available without
blocking for a task switch.

	
is_stopped()

	Return a boolean indicating whether or not stop
has been called.

	
push(*items)

	Accept one or more item and push them to the end of the
aiter’s queue.

	
stop()

	Raise a StopAsyncIteration exception on the listener side
once no more already-queued elements are pending.

	
class aiter.sharable_aiter(aiter)

	Not all iterators can have multiple consumers. For example, asynchronous
generators don’t allow it. But if you wrap it with one of these,
you’ll be okay.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 aiter	

Index

 A
 | F
 | G
 | I
 | J
 | M
 | P
 | S

A

 	
 	active_aiter() (in module aiter)

 	aiter (module)

 	aiter_forker() (in module aiter)

 	
 	aiter_to_iter() (in module aiter)

 	available_iter() (aiter.push_aiter method)

 	azip() (in module aiter)

F

 	
 	flatten_aiter() (in module aiter)

 	
 	fork() (aiter.push_aiter method)

G

 	
 	gated_aiter (class in aiter)

I

 	
 	is_item_available() (aiter.push_aiter method)

 	is_len_at_least() (aiter.push_aiter method)

 	
 	is_stopped() (aiter.push_aiter method)

 	iter_to_aiter() (in module aiter)

J

 	
 	join_aiters() (in module aiter)

M

 	
 	map_aiter() (in module aiter)

 	
 	map_filter_aiter() (in module aiter)

P

 	
 	preload_aiter() (in module aiter)

 	
 	push() (aiter.push_aiter method)

 	push_aiter (class in aiter)

S

 	
 	sharable_aiter (class in aiter)

 	
 	stop() (aiter.push_aiter method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to aiter’s documentation!

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

