
aiter Documentation

Richard Kiss

Feb 25, 2019





Contents:

1 Indices and tables 3

Python Module Index 5

i



ii



aiter Documentation

This documentation is a work-in-progress, and your contributions are welcome at <https://github.com/richardkiss/
aiter>. Useful patterns building upon asynchronous iterators

aiter.active_aiter(aiter)
Wrap an aiter with a task that actively yanks out the items and puts them into a push_q.

This might be useful if you have an iterator that needs its elements pulled out as soon as they are created and
cached in memory, even if the consumer is not yet ready. Be careful though, since getting too far behind can
mean lots of memory is consumed, especially if each element uses a lot of memory.

aiter.aiter_forker(aiter)
If you have an aiter that you would like to fork (split into multiple iterators, each of which produces the same
elements), wrap it with this function.

Returns a aiter.push_aiter object that will yield the same objects in the same order. This object supports
fork, which will let you create a duplicate stream.

aiter.aiter_to_iter(aiter, loop=None)
Convert an async iterator to a regular iterator by invoking run_until_complete repeatedly.

Parameters

• aiter (aiter) – an asynchronous iterator

• loop (asyncio event loop) – the loop which will run aiter

Returns a synchronous iterator returning the same elements as aiter

Return type a synchronous iterator

aiter.azip(*aiters)
async version of zip This function takes a list of async iterators and returns a single async iterator that yields
tuples of elements.

Obviously this iterator advances as slow its slowest component.

example:

async for a, b, c in azip(aiter1, aiter2, aiter3): print(a, b, c)

aiter.flatten_aiter(aiter)
Take an async iterator that returns lists and return the individual elements.

class aiter.gated_aiter(aiter)
Returns an aiter that you can “push” integer values into. When a number is pushed, that many items are allowed
out through the gate.

This is kind of like a discrete version of an electronic transistor.

aiter.iter_to_aiter(iter)
This converts a regular iterator to an async iterator

aiter.join_aiters(aiter_of_aiters)
Takes an iterator of async iterators and pipe them into a single async iterator.

This creates a task to monitor the main iterator, plus a task for each active iterator that has come out of the main
iterator.

aiter.map_aiter(map_f, aiter)
Take an async iterator and a map function, and apply the function to everything coming out of the iterator before
passing it on.

aiter.map_filter_aiter(map_f, aiter)
In this case, the map_f must return a list, which will be flattened. You can filter items by excluding them from
the list. Empty lists are okay.

Contents: 1

https://codecov.io/github/richardkiss/aiter
https://pypi.python.org/pypi/aiter
https://pypi.python.org/pypi/aiter
https://travis-ci.org/richardkiss/aiter
https://github.com/richardkiss/aiter
https://github.com/richardkiss/aiter


aiter Documentation

aiter.preload_aiter(preload_size, aiter)
This aiter wraps around another aiter, and forces a preloaded buffer of the given size.

class aiter.push_aiter(tail=None, next_preflight=None)
An asynchronous iterator based on a linked-list. Data goes in the head via “push”. Allows peeking to determine
how many elements are ready. Can be copied very cheaply by copying the tail. Has a “preflight” that is called
whenever __anext__ is called. The __anext__ method is wrapped with a semaphore so multiple tasks can
use the same iterator, and each output will go to only one task.

This is functionally very similar to an async.Queue object. It creates an aiter that you can push items into.
Unlike a Queue object, you can also invoke stop, which will raise a StopAsyncIteration on the listener’s side,
allowing for a clean exit.

You’d use this when you want to “turn around” execution, ie. have a task that is occasionally invoked (like a
hardware interrupt) to produce a new event for an aiter.

Parameters

• next_preflight (a function that takes no arguments) – called every
time __anext__ is invoked. Intended to give the creator a chance to add more elements
to the queue, if necessary.

• tail (push_aiter_head) – the tail where new objects are pushed into the queue. Used
by fork

available_iter()
Return a synchronous iterator of elements that are immediately available to be consumed without waiting
for a task switch.

fork(is_active=True)
Create and return a clone of this aiter at its current state. This copy can be used by a separate task, and it
will get the same output.

You might use this is you have an event stream that has different types of events, and you want to write
several modules, each of which handles a subset of event types. Each module can get a view of the entire
stream and simply ignore events it’s not interested in.

Parameters is_active (True or False) – If False, this clone is a passive one, that will
only return elements that have already been requested by at least one active clone. You might
use this feature for a task that keeps stats on events, but it doesn’t want to force the events to
be removed from because a backlog of events might cause flow-control to be invoked.

is_item_available()
Return a boolean indicating whether or not an element is available without blocking for a task switch.

is_len_at_least(n)
Return a boolean indicating whether or not n elements are available without blocking for a task switch.

is_stopped()
Return a boolean indicating whether or not stop has been called.

push(*items)
Accept one or more item and push them to the end of the aiter’s queue.

stop()
Raise a StopAsyncIteration exception on the listener side once no more already-queued elements are pend-
ing.

class aiter.sharable_aiter(aiter)
Not all iterators can have multiple consumers. For example, asynchronous generators don’t allow it. But if you
wrap it with one of these, you’ll be okay.

2 Contents:



CHAPTER 1

Indices and tables

• genindex

• modindex

• search

3



aiter Documentation

4 Chapter 1. Indices and tables



Python Module Index

a
aiter, 1

5



aiter Documentation

6 Python Module Index



Index

A
active_aiter() (in module aiter), 1
aiter (module), 1
aiter_forker() (in module aiter), 1
aiter_to_iter() (in module aiter), 1
available_iter() (aiter.push_aiter method), 2
azip() (in module aiter), 1

F
flatten_aiter() (in module aiter), 1
fork() (aiter.push_aiter method), 2

G
gated_aiter (class in aiter), 1

I
is_item_available() (aiter.push_aiter method), 2
is_len_at_least() (aiter.push_aiter method), 2
is_stopped() (aiter.push_aiter method), 2
iter_to_aiter() (in module aiter), 1

J
join_aiters() (in module aiter), 1

M
map_aiter() (in module aiter), 1
map_filter_aiter() (in module aiter), 1

P
preload_aiter() (in module aiter), 1
push() (aiter.push_aiter method), 2
push_aiter (class in aiter), 2

S
sharable_aiter (class in aiter), 2
stop() (aiter.push_aiter method), 2

7


	Indices and tables
	Python Module Index

